Object Representations for Learning and Reasoning

Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS)

December 11, 2020, Virtual Workshop

Join via the livestream 🎥 · RocketChat · @ORLR_Workshop · #ORLR2020 · Join our community Slack!


Keynote Speaker

Elizabeth Spelke is the Marshall L. Berkman Professor of Psychology at Harvard University and an investigator at the NSF-MIT Center for Brains, Minds and Machines. Her laboratory focuses on the sources of uniquely human cognitive capacities, including capacities for formal mathematics, for constructing and using symbols, and for developing comprehensive taxonomies of objects. She probes the sources of these capacities primarily through behavioral research on human infants and preschool children, focusing on the origins and development of their understanding of objects, actions, people, places, number, and geometry. In collaboration with computational cognitive scientists, she aims to test computational models of infants’ cognitive capacities. In collaboration with economists, she has begun to take her research from the laboratory to the field, where randomized controlled experiments can serve to evaluate interventions, guided by research in cognitive science, that seek to enhance young children’s learning.

Invited Speakers

Sungjin Ahn is an Assistant Professor of Computer Science at Rutgers University and directs the Rutgers Machine Learning (RUML) lab. He is also affiliated with Rutgers Center for Cognitive Science. His research focus is on how an AI-agent can learn the structure and representations of the world in an unsupervised and compositional way, with a particular interest in object-centric learning. His approach to achieving this is based on deep learning, Bayesian modeling, reinforcement learning, and inspiration from cognitive & neuroscience. He received Ph.D. at the University of California, Irvine with Max Welling and did a postdoc with Yoshua Bengio at Mila. Then, he joined Rutgers University in Fall 2018. He has co-organized ICML 2020 Workshop on Object-Oriented Learning and received the ICML best paper award in ICML 2012.
Renée Baillargeon is an Alumni Distinguished Professor of Psychology at the University of Illinois Urbana-Champaign. Her research examines cognitive development in infancy and focuses primarily on causal reasoning. In particular, she explores how infants make sense of the events they observe, and what explanatory frameworks and learning mechanisms enable them to do so. In addition to this primary focus on causal reasoning, she is interested in a broad range of related issues including object perception, categorization, object individuation, number, and executive-function skills.
Wilka Carvalho is a PhD Candidate in Computer Science at the University of Michigan–Ann Arbor where he is advised by Honglak Lee, Satinder Singh, and Richard Lewis. His long-term research goal is to develop cognitive theories of learning that help us understand how humans infer, reason with, and exploit the rich structure present in realistic visual scenes to enable sophisticated behavioral policies. Towards this end, he is studying how object-centric representation learning and reinforcement learning can bring us closer to human-level artificial intelligence. He is supported by an NSF GRFP Fellowship and a UM Rackham Merit Fellowship.
Dieter Fox is a professor in the Allen School of Computer Science & Engineering at the University of Washington, where he heads the UW Robotics and State Estimation Lab. He is also Senior Director of Robotics Research at NVIDIA. His research is in robotics and artificial intelligence, with a focus on state estimation and perception applied to problems such as mapping, object detection and tracking, robot manipulation, and activity recognition.
Jessica Hamrick is a Senior Research Scientist at DeepMind, where she studies how to build machines that can flexibly build and deploy models of the world. Her work combines insights from cognitive science with structured relational architectures, model-based deep reinforcement learning, and planning. Jessica received a Ph.D. in Psychology from UC Berkeley in 2017, and an M.Eng. and B.S. in Computer Science from MIT in 2012.
Irina Higgins is a research scientist at DeepMind, where she works in the Frontiers team. Her work aims to bring together insights from the fields of neuroscience and physics to advance general artificial intelligence through improved representation learning. Before joining DeepMind, Irina was a British Psychological Society Undergraduate Award winner for her achievements as an undergraduate student in Experimental Psychology at Westminster University, followed by a DPhil at the Oxford Centre for Computational Neuroscience and Artificial Intelligence, where she focused on understanding the computational principles underlying speech processing in the auditory brain. During her DPhil, Irina also worked on developing poker AI, applying machine learning in the finance sector, and working on speech recognition at Google Research.

Panel Moderators

Rachit Dubey (panel moderator) is a graduate student at Princeton University, working with Tom Griffiths. His research is centered around understanding internal reward functions such as curiosity and happiness, and how people (and animals) modulate and control these rewards.
Klaus Greff (panel moderator) is a Research Scientist at Google Brain in Berlin and a PhD student at IDSIA with Jürgen Schmidhuber. His research focuses on the binding problem in neural networks, on learning object representations, and in particular on unsupervised object perception. His work received an outstanding paper award from IEEE Transactions on Neural Networks and Learning Systems.